#### European Regulations for Formaldehyde

Harald Schwab, Rainer Marutzky, Bettina Meyer Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut Braunschweig / Germany



- Introduction
- Formaldehyde testing methods in Europe
- Regulations in Europe
- International Formaldehyde testing methods
- Correlation chamber versus some other test methods.
- FPC methods: advantages and disadvantages
- Prospects



#### Introduction (1)

- WKI = Wilhelm-Klauditz-Institut = Fraunhofer-Institut for wood research
- WKI is one of approximately 60 research instituts of the Fraunhofer Gesellschaft (12.000 researchers and employees)
- Head of Department "Quality Assessment"
- Convenor of CEN/TC 112 "Wood-based panels" WG 4 "Test methods"
- Convenor of ISO/TC 89 "Wood-based panels" WG 5 "Test methods

- Formaldehyde is a most simple but highly reactive organic compound
- It is a natural trace compound and an important substance for chemical and technical applications and for hygienic purposes
- It is used for the formulation of wood-based panel adhesives
- It is a very valuable compound in these applications and difficult to substitute

#### Introduction (3)

- 2004: World Health Organisation advisory body International Agency for Research on Cancer - IARC proposes to reclassify formaldehyde
- IARC proposal contains serious contradictions but initiates worldwide discussions about formaldehyde
- The formaldehyde reclassification remains open
- Pressure on politics, authorities and industry will trigger reevaluation of exposure levels and emission classes

## Formaldehyde testing methods in Europe

#### Reference method:

Chamber method EN 717-1 with three volume options

#### **Derived methods:**

Perforator method EN 120

Gas analysis method EN 717-2

Flask method EN 717-3

(Desiccator method ISO/DIS 12460-4 or JIS A 1460 or JAS 233)



## European chamber method EN 717-1







### European chamber method EN 717-1



**Determination of** formaldehyde emissions ("steady state") up to 28 days in ppm or mg/m<sup>3</sup>

Test conditions: t = 23°C, a = 45 %, q = 1m<sup>2</sup>h/m<sup>3</sup>

Emission class E1:

steady-state concentration ≤ 0.1 ppm (0,12 mg/m<sup>3</sup>)



#### Perforator method EN 120



- Determination of formaldehyde content in mg/100 g
- Extraction of panel specimen with toluene
- Suitable for uncoated PB, MDF and **OSB**
- Emission class E1: ≤ 8.0 mg/100 g



### Gas analysis method EN 717-2



- Determination of formaldehyde content in mg/m<sup>2</sup>xh
- Suitable for coated PB, MDF
- Suitable for plywood (coated and uncoated)
- ► Emission class E1: 
  3,5 mg/hxm²

#### Flask Method EN 717-3



- Determination of formaldehyde release in mg/kg
- Suitable only for internal production control of woodbased panels
- no official limit values published



#### Desiccator method ISO/DIS 12460-4



- Determination of formaldehyde release in mg/l
- Suitable for uncoated and coated boards (MDF and PB)

Page 12

F\*\*\*\* limit value: 0,3 mg/l

#### Europe's first recognized organization for tests

according JIS



2004 WKI became the first European test institute which was recognized to do formaldehyde tests according to JIS standards as official test organization



### WKI test equipment

**►** EN 717-1 (Chamber)

► EN 717-2 (Gas analysis)

► 1 x <u>48 m³</u> (VOC)

► 26 x <u>1 m³</u> (VOC) ► 10 x

▶ 1 x 38 m<sup>3</sup>

▶ 8 x 0,5 m<sup>3</sup>

▶ 1 x 25 m<sup>3</sup>

► 4 x 0,25 m<sup>3</sup>

► 1 x <u>24 m³</u> (2009)

- ▶ 10 x 0,023 m<sup>3</sup>
- ► ISO/DiS 12460-4, JIS A 1460, JAS 233 (Desiccator)
- ► EN 717-3 (Flask method)
- ▶ 50 x
- ► EN 120 (Perforator)

Page 14

▶ 16 x

▶ 13 x



#### Methods for formaldehyde analysis

#### Acetyl-aceton method:

- the determination is based on the Hantzsch reaction in which formaldehyde reacts with ammonium ions and acetylaceton to yield diacetyldihydrolutidine (DDL)
- Analytical evaluation:
- photometrical detection or fluorescence spectroscopy

Corvallis 0

Holzforschung

### Regulations in Europe (1)

1980 Some European countries started with

formaldehyde regulations on particle boards

Since 1985 Emission class E1 (0,1 ppm boards) became

obligatory for wood-based panels in Austria,

Denmark, Germany, Sweden an some more

Page 16

European countries



- since 2004: Emission classes E1 and E2 were established by European Standard EN 13986 for use in construction
- where formaldehyde-containing materials, particularly resins, have been added to the product as a part of the production process, the product shall be tested and classified into one of two classes: E1 and E2
- ▶ the test requirement does not apply to wood-based panels to which no formaldehyde containing materials were added during production or in post-production processing; these may be classified E1 without testing

Holzforschung

- Examples of such panel products are:
- Cement bonded particle boards (unfaced)
- Wet process fibreboard (unfaced), when no formaldehyde emitting resin has been added to the process
- unfaced, coated or overlaid wood based panels glued with resins emitting either no formaldehyde or negligible amounts of formaldehyde after production as e.g. isocyanate, or phenolic glue.

### Regulations in Europe (4)

The limit values for the formaldehyde class E1 are given in Table B.1

|                                      |             | Panel product                                                 |                                                                    |                                                                                                             |
|--------------------------------------|-------------|---------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                      |             | Unfaced                                                       | Unfaced                                                            | Coated, overlaid or veneered                                                                                |
|                                      |             | Particleboard<br>OSB<br>MDF                                   | Solid wood panels<br>LVL                                           | Particleboard OSB MDF Plywood Solid wood panels Fibre boards (wet process) Cement bonded particleboards LVL |
| Initial<br>type testing <sup>a</sup> | Test method | T TIT VILE of priction ENV 717-1 on OHOH mag 1,0 risht relise |                                                                    |                                                                                                             |
|                                      | Requirement | Release ≤ 0,124 mg/m³ air                                     |                                                                    |                                                                                                             |
| Factory production control           | Test method | EN 120                                                        | EN 717-2                                                           |                                                                                                             |
|                                      | Requirement | Content ≤ 8<br>mg/100 g oven<br>dry board<br>See NOTE 3       | Release ≤ 3,5 mg/m²h  or ≤ 5 mg/m²h within 3 days after production |                                                                                                             |

For established products, initial type testing may also be done on the basis of existing data with EN 120 or EN 717-2 testing, either from factory production control or from external inspection.



- ▶ the EN 120 values for particleboards, OSB and MDF apply to boards conditioned to a moisture content of 6,5 %.; in the case of particleboards or MDF with different moisture contents, the EN 120 test results (known as the perforator value) shall be multiplied by the F factor given in EN 312 (particleboards), EN 622-1 (MDF) or EN 300 (OSB); the F factors in these three standards are only valid for boards within the specified moisture content ranges given in the three standards;
- Experience has shown that to ensure compliance with the limits in Table B.1 the rolling average of the EN 120 values found from the internal factory control over a period of ½ year should not exceed 6,5 mg HCHO/100 g panel mass for particleboards and OSB or 7 mg HCHO/100 g panel mass for MDF

- 2006: Emission class E1 became obligatory for panel production of EPF European Panel Federation members
- 0.05 ppm boards can be marked with an environmental label ("Blue Angel")
- 0.03 ppm boards are obligatory for members of the German Association of Producers of Prefabricated Houses BDF (since 2003)
- 0.03 ppm boards are about equal to the Japanese emission class F\*\*\*\*

### Formaldehyde testing methods of ISO

#### Reference method:

1 m<sup>3</sup> Chamber method: ISO/FDIS 12460-1

#### Derived methods:

Small chamber method: ISO/DIS 12460-2

Gas analysis method ISO/DIS 12460-3

Desiccator method ISO/DIS 12460-4

#### Correlation 1m<sup>3</sup> chamber versus:

Conditions of the chamber test EN 717-1

Temperature 23 °C ± 0.5 K

▶ Rel. humidity
45 % ± 3 %

Loading rate
1 m²/m³ \*

Air exchange rate 1 / hour

Air velocity 0.1 to 0.3 m/sec

\* equal for PB, MDF and OSB

Perforator method
Gas analysis method
Desiccator method
for PB and MDF

Correlation for 23 values (all):  $y = +51.653x-0.208 - R^2 = 0.893 - s = 0.815$ 

WK



Page 25

Correlation for 13 values (all):  $y = +63.276x-0.799 - R^2 = 0.820 - s = 1.333$ 





Correlation for 23 values (all):  $y = +19.899x + 0.186 - R^2 = 0.816 - s = 0.429$ 





Correlation for 13 values (all):  $y = +31.961x-0.277 - R^2 = 0.849 - s = 0.606$ 



Correlation for 23 values (all):  $y = +6.158x - 0.009 - R^2 = 0.881 - s = 0.103$ 



Correlation for 13 values (all): y =+3.881x-0.002 - R2 =0.948 - s =0.041







### Summary

#### Particleboards

- ► Chamber (717-1) Perforator: R<sup>2</sup> = 0,893
- Chamber (717-1) Gas analysis: R<sup>2</sup> = 0,816
- Chamber (717-1) Desiccator: R<sup>2</sup> = 0,881
- ► Chamber (ASTM E 1333) Perforator:  $R^2 = 0.555$

#### **►** MDF

- ► Chamber (717-1) Perforator:  $R^2 = 0.820$
- ► Chamber (717-1) Gas analysis: R<sup>2</sup> = 0,849

Page 31

► Chamber (717-1) – Desiccator: R<sup>2</sup> = 0,948



## FPC methods: advantages and disadvantages (1)

| <u>Chamber</u>                                          | Gas analysis                  | <b>Perforator</b>             | <u>Desiccator</u>                                           |
|---------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------|
| <b>plus</b> : test parameter similar to room conditions | plus: short term results      | plus: very short term results | plus: cheap equipment                                       |
| plus: large sample sizes to limit                       | <b>plus</b> : simple handling | <b>plus</b> : cheap equipment | minus: samples have to be conditioned for 7 days            |
| the influence of failures                               | minus: expensive equipment    | minus: critical because of    |                                                             |
| because of inhomogeneities                              | depending on the GA -producer | toluene                       |                                                             |
| minus: long test period                                 |                               |                               |                                                             |
| minus: expensive equipment                              |                               |                               |                                                             |
| Test period: 10 to 28 days                              | Test period: 4 hours          | Test period: 2,5 hours        | <b>Test period</b> : 24 hours plus seven days pre-treatment |
|                                                         |                               |                               | Page 32                                                     |



## FPC methods: advantages and disadvantages (2)

#### DMC (dynamic micro chamber) according to WKI experiences

plus: very short test period

minus: expensive equipment

minus: equipment only

available in USA

minus: background HCHO-

level 0.04 ppm

**Test period**: 30 minutes plus 2 hours pre-treatment

Correlation with the European reference test method (EN 717-1): only

for pre-conditioned (minimum 2 weeks) panels





### Prospects (1)

- ► The establishment of safer test procedures for low emission boards
- The integration of US and Japanese formaldehyde test standards, especially the desiccator method
- The evaluation of European and Japan testing standards by an EPF Formaldehyde Testing Project

### Prospects (2)

- Reclassification by IARC challenges the wood-based panel industries and glue producers
- Lower emission standards are to be established on a global basis
- Optimization of the whole system from glue to production process will be needed

Holzforschung

### Prospects (3)

- Formaldehyde-based adhesives for wood-based panels are UF and MUF resins and to a lower extend PF resins
- The formaldehyde-free adhesive pMDI completes the family of essential resins for the wood-based panel industries
- For the next years, conventional adhesives with reduced or no formaldehyde emissions will maintain their dominating position
- The importance of alternative resins will increase but on a lower level as often proposed

# Thank you for your attention!

